• Derecho y política de privacidad
twitter
email
  • Inicio
  • Nabucco Center
  • Spin-Off
  • Profesionales por el Bien Común

Python Tools for Machine Learning

08 Ene 2015
nabuccocenter
Off
machine learning, python

Python is one of the best programming languages out there, with an extensive coverage in scientific computing: computer vision, artificial intelligence, mathematics, astronomy to name a few. Unsurprisingly, this holds true for machine learning as well.phyton

 

Of course, it has some disadvantages too; one of which is that the tools and libraries for Python are scattered. If you are a unix-minded person, this works quite conveniently as every tool does one thing and does it well. However, this also requires you to know different libraries and tools, including their advantages and disadvantages, to be able to make a sound decision for the systems that you are building. Tools by themselves do not make a system or product better, but with the right tools we can work much more efficiently and be more productive. Therefore, knowing the right tools for your work domain is crucially important.

This post aims to list and describe the most useful machine learning tools and libraries that are available for Python. To make this list, we did not require the library to be written in Python; it was sufficient for it to have a Python interface. We also have a small section on Deep Learning at the end as it has received a fair amount of attention recently.

We do not aim to list all the machine learning libraries available in Python (the Python package index returns 139 results for “machine learning”) but rather the ones that we found useful and well-maintained to the best of our knowledge. Moreover, although some of modules could be used for various machine learning tasks, we included libraries whose main focus is machine learning. For example, although Scipy has some clustering algorithms, the main focus of this module is not machine learning but rather in being a comprehensive set of tools for scientific computing. Therefore, we excluded libraries like Scipy from our list (though we use it too!).

Another thing worth mentioning is that we also evaluated the library based on how it integrates with other scientific computing libraries because machine learning (either supervised or unsupervised) is part of a data processing system. If the library that you are using does not fit with your rest of data processing system, then you may find yourself spending a tremendous amount of time to creating intermediate layers between different libraries. It is important to have a great library in your toolset but it is also important for that library to integrate well with other libraries.

More

About the Author
Nabucco Center investiga, desarrolla y facilita las herramientas necesarias para el análisis de problemas complejos y la toma de decisiones desde instrumentos tecnológicos y científicos. Perseguimos avanzar en el empleo de herramientas matemáticas en el campo de la consultoría y el análisis...

Populares

Criptografía cuántica ¿nos sobrarán las claves largas de cifras y letras?

No Responses.

La competencia no es imprescindible para la evolución, revela una simulación informática

No Responses.

Caos y matemáticas

No Responses.

Modelizando un restaurante

No Responses.

Breve introducción dinámica de sistemas

No Responses.

Inteligencia computacional

No Responses.

Categorías

  • cambio tecnológico
  • ciencia
  • complejidad
    • dinamica de sistemas
  • cultura
  • data
  • investigación y sistemas complejos
  • matemáticas
  • modelización
  • PBC
  • sistemas dinámicos

busca en Nabucco Center

Comparte nuestra web

Síguenos

Síguenos en Twitter

Tweets por el @nabuccocenter.

Últimas entradas

  • Criptografía cuántica ¿nos sobrarán las claves largas de cifras y letras?
  • Sistemas dinámicos terminología para empezar
  • Startup uses blockchain, to ensure minerals come from ethical sources
  • Contratos «inteligentes» con blockchain, todavía vulnerables
  • Consciencia y cerebro, investigación de entropías cerebrales)

RSS Nature News

Nabucco Center 2016
Investigando fenómenos complejos
Política de CookiesEsta página utiliza cookies y otras tecnologías para que podamos mejorar su experiencia en nuestros sitios: Más información.