A la hora de diseñar nuestra red neuronal para resolver un problema concreto es conveniente disponer de una herramienta software de diseño de ANN. Con una herramienta de éstas basta con pensar en términos de redes y no en programación de algoritmos en lenguajes de alto nivel. De esta manera todo el esfuerzo se debe dirigir al diseño de la arquitectura o estructura de la red y en la selección de los datos del conjunto de entrenamiento y de test.
El diseñador construye con el software apropiado la red especificando el número de capas, de neuronas y los tipos de conexiones. Define los ficheros o conjuntos de datos de entrada y salida, y debe elegir los parámetros de los cálculos internos de la red.
Además el diseñador puede seleccionar diferentes funciones de transferencia y procesamiento de las neuronas, así como construir variaciones de los modelos estándar.
En la fase de entrenamiento se debe especificar el número de iteraciones y la planificación de los cambios de los parámetros de aprendizaje. Generalmente esta fase requiere varias sesiones y la experimentación de diferentes parámetros de aprendizaje, diferentes vectores de entrada o diversas estrategias de entrenamiento permiten obtener conclusiones definitivas para la solución más eficaz de una aplicación.
Afortunadamente la disposición de este tipo de software apropiado por el diseñador de ANN permite que el diseñador no se preocupe de los aspectos computacionales y disponga de todo el tiempo tanto para la elección de la arquitectura como para la selección y prepocesado de los datos presentados a la red.
Este último aspecto es uno de los factores más influyentes en el éxito del diseño y realización de una red para una aplicación.
Las aplicaciones son múltiples, ingeniería, saludo, previsión variables económicas…